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Global Sensitivity Analysis: Variance-Based methods

From Saltelli et al (2001)

Parts of variance explained 
by the different parameters

Sobol’ Indices: 
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SI (X i)=
V (E (Y∣X i))

V (Y )
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V (E (Y∣X−i))
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Cluster-based GSA : Principle

Roux, S., Buis, S., Lafolie, F., & Lamboni, M. (2021). 
Cluster-based GSA: Global sensitivity analysis of models with temporal or spatial outputs using clustering. Environmental Modelling & 
Software, 

Combines clustering methods 

=> reveal and characterize multiple distinct behaviors of 
the model outputs  

and variance-based methods
=> identify in a robust way parameters and interactions 

that drive these different behaviors



  

●

output = Membership Functions (MF) 
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Roux, S., Buis, S., Lafolie, F., & Lamboni, M. (2021). 
Cluster-based GSA: Global sensitivity analysis of models with temporal or spatial outputs using clustering. Environmental Modelling & 
Software, 

Cluster-based GSA : scalar membership functions



  

Cluster based GSA indices 

SI k (X j)=
V (E (uk∣X j))

V (uk )
TSI k (X j)=1−

V (E (uk∣X− j))

V (uk )
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● Sensitivity indices on membership functions 
=> Which parameters (or interactions) drive the model outputs toward a targeted cluster?

● Sensitivity indices on membership function differences 
=> Which parameters (or interactions) drive the model outputs from one cluster to 
another?

● Aggregated indices on the vector of membership functions 
=> Which parameters (or interactions) globally impact changes between clusters 

Roux, S., Buis, S., Lafolie, F., & Lamboni, M. (2021). 
Cluster-based GSA: Global sensitivity analysis of models with temporal or spatial outputs using clustering. Environmental Modelling & 
Software, 
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  Roux, S., Buis, S., Lafolie, F., & Lamboni, M. (2021). 
Cluster-based GSA: Global sensitivity analysis of models with temporal or spatial outputs using clustering. Environmental Modelling & 
Software, 

Cluster-based GSA : workflow



  

Possible use of cluster-based sensitivity indices

●  Using ClustSIs, we can associate sensitivity indices to output space 
partitions

● There are 3 general ways of using cluster-based indices

S.Roux, MISTEA, June 2021
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CHARACTERIZATION
EXPLORATION



  

Sensitivity-driven clustering

● Objectives :

- revealing behaviors (ie regions of the output space) most (or very 
much) impacted by variations of a parameter (or a group or an 
interaction,..) using an optimization procedure

- expressing graphically the sensitivity of the input factors (or a group or 
an interaction,..) on the output, including in the case of MV outputs



  

Sensitivity-driven clustering

● 1D « analytical example » 

● 2D (numerical with different approaches )

● ND (numerical) 



  

Optimized sensitive partioning in 1D

- we restrict to the study to binary partitions A,B of [0,1] 
 
- many possible situations depending on connexity

 - binarization with 2 connected components => parameterization of 
 by a single cutting value yc

-  binarization with 3 connected components => parameterized by a two 
cutting values  yc1 and yc2

A B B BA A A A AA ...



  

1D « analytical example » Y (x1 , x2)=sign(X1)⋅|X2|

x1∼U [−1,1]

x2∼U [−1,1]
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1D « analytical example » Y (x1 , x2)=sign(X1)⋅|X2|

x1∼U [−1,1]

x2∼U [−1,1]

● Possibility to solve analytically

● Optimal partition depends on the parameter X1 or X2

● Optimum found even if the the space of partitions has not 
been completely explored (as SI=1 is optimal)

● We can have SI_C*>SI  (clustSI2*=1, SI2=0)

● Optimal partitions can have more than 2 connected 
components 

● The optimal partition in not unique
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-1 1
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2D numerical example

Y=(Y1,Y2) = f(X1,X2,x3,X4)
3 centers

X1,X2 : choice of center
X3 : angle
X4 : distance from center

test2d_1 = function(x)
{
cy = cent_y[1+as.numeric(x[1]>0.5)]
if (cy==0.25)

cx=0.5
if (cy==0.75)

cx=cent_x[1+ as.numeric(x[2]>0.5)]

y1 = cx + 0.4* cos(2*pi*x[3])*x[4]^3
y2 = cy + 0.4* sin(2*pi*x[3])*x[4]^3
return(c(y1,y2))
}

color=X1 color=X2 color=X3 color=X4



  

2D partitioning: connected binarization with straights lines

●  Boundary discretization :  n pts per border
●  complexity: 6.n2

●  N=7  => 294 splitting



  

●  Principle of the algorithm for SI/TSI criteria :
=> Clustering of the outputs into K clusters
=> Generate all partitions [1..K] into 2 sets
=> Compute SI/TSI criteria for each binarization

●  Nb : 2^(K-1)
K=10 : Nb= 512
K=20 : Nb= 524288

 ⇒ solve the issue of getting non connected set
 ⇒ very flexible (various SI-based criteria, 

adding constraints)
 ⇒ limited spatial resolution (K..)

 ⇒ can handle MV output (providing the 
clustering does)

... ......

2D (and nD) partitioning: non-connected partitioning
SI1 criterion



  

2D (and nD) partitioning: non-connected partitioning
SI1 criterion

●  Principle of the algorithm for SI/TSI criteria:
(sensitivity indices on Membership functions)
=> Clustering of the outputs into K clusters
=> Generate all partitions [1..K] into 2 sets
=> Compute SI/TSI criteria for each binarization

SI k (X j)=
V (E (uk∣X j))

V (uk )

K=9



  

2D (and nD) partitioning: non-connected partitioning
Other criterion : “neutral class”

●  Principle of the algorithm using ‘neutral class’
(SI/TSI criteria on MF differences)

● => Clustering of the outputs into K clusters
● => Generate all partitions [1..K] into 3 sets
● => Compute SI/TSI criteria for each set using u1-u2

K=9

SI kl(X j)=
V (E((uk−ul)∣X j))

V (uk−ul)



  

2D (and nD) partitioning: non-connected partitioning
Other criterion : “GSI”

●  Principle of the algorithm 
● => Clustering of the outputs into K clusters
● => Generate all partitions [1..K] into 2-3-4-5 sets
● => Compute GSI criteria for each set 

K=9

SI (X j)=
∑k=1

K
V (uk)SI k (X j)

∑k=1

K
V (uk)

Studying GSI for (X1,X2) and 2-3-4-5 sets 



2D (and nD) partitioning: non-connected partitioning
Algorithm improvement for SI1 criterion

 ⇒ Keeping the exhaustive step (seems necessary to handle non connectivity)
 ⇒ Improving the pre-processing step by using properties of the criterion

We consider a set of elementary patches Ck (region of the output space)
We consider the conditional distribution of Xi for Y in Ck
We compute the associated histograms for a given discretization of Xi into bins

The SI1 based clustering criterion writes 

●



2D (and nD) partitioning: non-connected partitioning
Algorithm improvement for SI1 criterion

 ⇒ Keeping the exhaustive step (seems necessary to handle non connectivity)
 ⇒ Improving the pre-processing step by using properties of the criterion

Let’s consider two patches Ck, Ck’ and their associated histograms Hk,Hk’
Let’s  suppose that Hk,Hk’ are highly correlated

Let’s denote (C*,-C*) the optimal partition built from the (Ck)

Then 
Either     Ck and Ck’ belongs to C*

Ck and Ck’ belongs to -C* 

●



2D (and nD) partitioning: non-connected partitioning
Algorithm improvement for SI1 criterion

 ⇒ Keeping the exhaustive step (seems necessary to handle non connectivity)
 ⇒ Improving the pre-processing step by using properties of the criterion

● High resolution clustering of the output space into K cluster (e.g. 150)

● New : Aggregation of clusters based on histogram correlation 
→ K’ metapatches

● Generate all partitions [1..K’] into 2 sets

● Compute SI/TSI criteria for each binarization



 

K=10

  

X3

Hierarchical clustering of elementary histograms



  

X3
K=150
Cut=0.2
K’=16

color=X1 color=X2 color=X3 color=X4

Results

(ancienne approche)



  

X4
Cut=0.1
K’=13

color=X1 color=X2 color=X3 color=X4

Resultats

(ancienne approche)



  

nD numerical example: ToyCurve

nD

PCA

Clustering

1D

2D

connected

Non connected - 2 cuts

Non connected - Preclustering

Connected (lines)

Non connected - Preclustering



  

nD numerical 
ToyCurve



  

Perspectives

● CB-GSA : applications on environmental models (crop mixtures or 
hydrologic models)

=> Key issues 
● DOE  
● Finding appropriate clustering (a priori or automatic)

 
● CB-GSA :Complementary analysis : intra-cluster and pure cluster 

transitions (which amounts to AS with dependent inputs) 

● Sensitivity-driven clustering : test on a realistic model with MV 
outputs

● Sensitivity driven clustering : more efficient algorithms ??
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