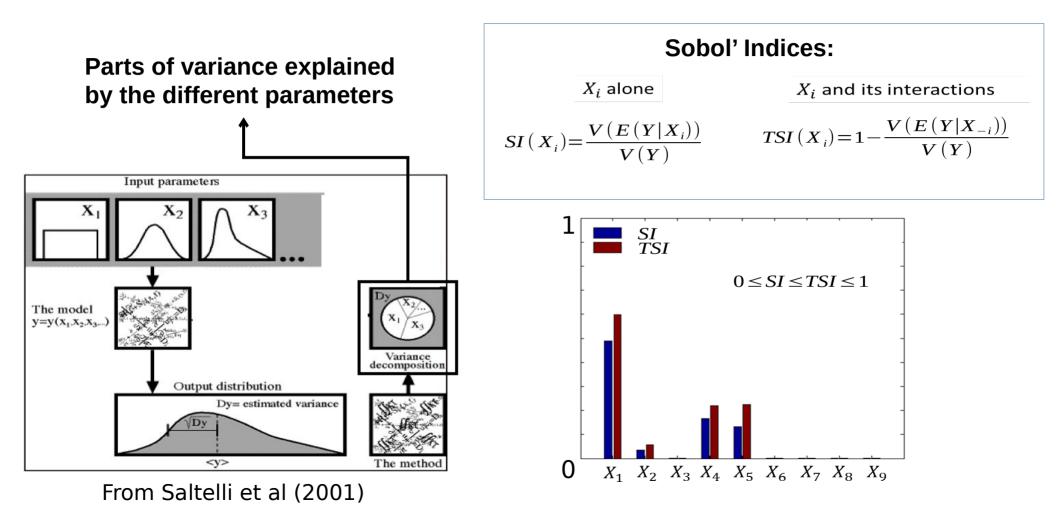
Couplage de clustering et d'analyses de sensibilité pour les modèles à sorties multivariées

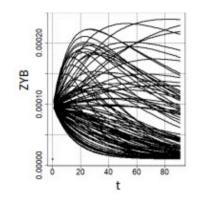
Sébastien Roux¹, Patrice Loisel¹, Samuel Buis²

¹ INRAE, UMR MISTEA, Montpellier, France ² INRAE, UMR EMMAH, Avignon, France,

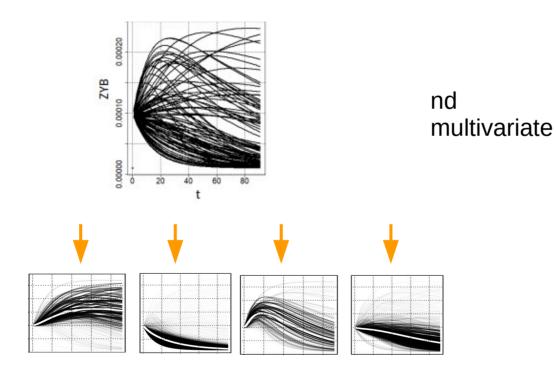
Journées du réseau Mexico, Toulouse, 29-30 novembre 2021

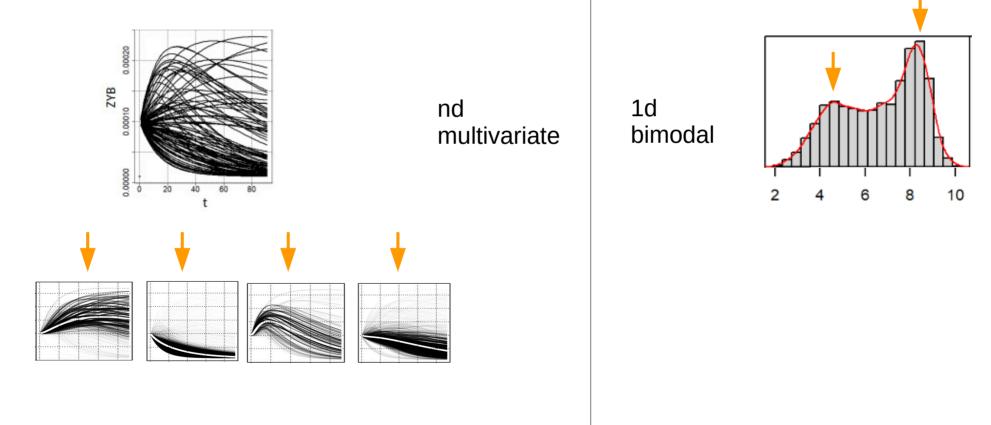
Global Sensitivity Analysis: Variance-Based methods





nd multivariate





Cluster-based GSA : Principle

Combines clustering methods

=> reveal and characterize multiple distinct behaviors of the model outputs

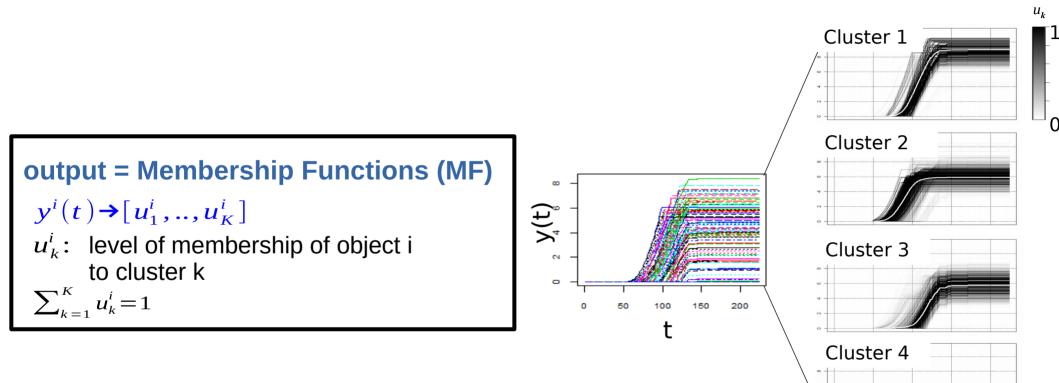
and variance-based methods

=> identify in a robust way parameters and interactions that drive these different behaviors

Roux, S., Buis, S., Lafolie, F., & Lamboni, M. (2021).

Cluster-based GSA: Global sensitivity analysis of models with temporal or spatial outputs using clustering. Environmental Modelling & Software,

Cluster-based GSA : scalar membership functions



Roux, S., Buis, S., Lafolie, F., & Lamboni, M. (2021).

Cluster-based GSA: Global sensitivity analysis of models with temporal or spatial outputs using clustering. Environmental Modelling & Software,

Cluster based GSA indices

Sensitivity indices on membership functions
 => Which parameters (or interactions) drive the model outputs toward a targeted cluster?

- Sensitivity indices on membership function differences => Which parameters (or interactions) drive the model outputs from one cluster to another? $SI_{kl}(X_{j}) = \frac{V(E((u_{k}-u_{l})|X_{j}))}{V(u_{k}-u_{l})}$ $TSI_{kl}(X_{j}) = 1 - \frac{V(E((u_{k}-u_{l})|X_{-j}))}{V(u_{k}-u_{l})}$
- Aggregated indices on the vector of membership functions
 => Which parameters (or interactions) globally impact changes between clusters

$$SI(X_{j}) = \frac{\sum_{k=1}^{K} V(u_{k}) SI_{k}(X_{j})}{\sum_{k=1}^{K} V(u_{k})}$$

 $\left| SI_{k}(X_{j}) = \frac{V(E(u_{k}|X_{j}))}{V(u_{k})} \right|$

$$\boxed{TSI(X_j) = \frac{\sum_{k=1}^{K} V(u_k) TSI_k(X_j)}{\sum_{k=1}^{K} V(u_k)}}$$

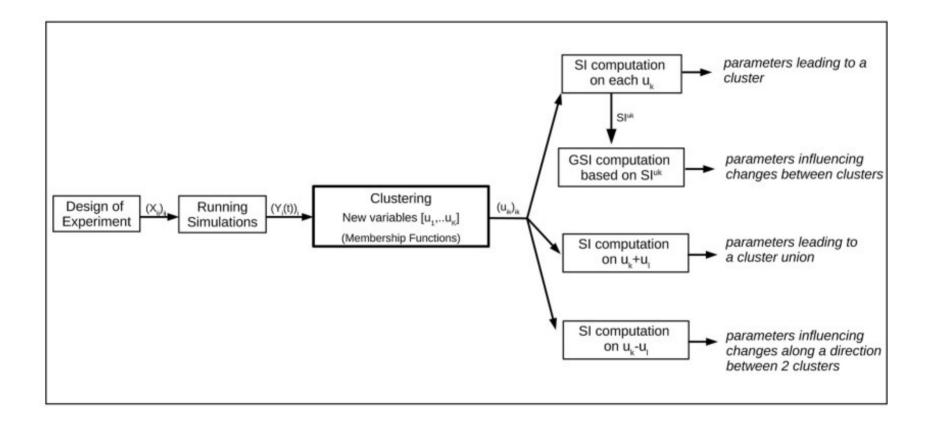
 $\left| TSI_{k}(X_{j}) = 1 - \frac{V(E(u_{k}|X_{-j}))}{V(u_{k})} \right|$

 $y^{i}(t) \rightarrow [u_{1}^{i}, ..., u_{K}^{i}]$

Roux, S., Buis, S., Lafolie, F., & Lamboni, M. (2021).

Cluster-based GSA: Global sensitivity analysis of models with temporal or spatial outputs using clustering. Environmental Modelling & Software,

Cluster-based GSA : workflow



Roux, S., Buis, S., Lafolie, F., & Lamboni, M. (2021). Cluster-based GSA: Global sensitivity analysis of models with temporal or spatial outputs using clustering. Environmental Modelling & Software,

- Using ClustSIs, we can associate sensitivity indices to output space partitions
- There are 3 general ways of using cluster-based indices

- Using ClustSIs, we can associate sensitivity indices to output space partitions
- There are 3 general ways of using ClustSIs

• **Prior partitions** (expertise-driven clustering)

- Using ClustSIs, we can associate sensitivity indices to output space partitions
- There are 3 general ways of using ClustSIs

• **Prior partitions** (expertise-driven clustering)

 Optimized Partitions

- Using ClustSIs, we can associate sensitivity indices to output space partitions
- There are 3 general ways of using ClustSIs

• **Prior partitions** (expertise-driven clustering)

• Optimized Partitions

-> Data-driven clustering ClusterBased GSA Optimization based on Y

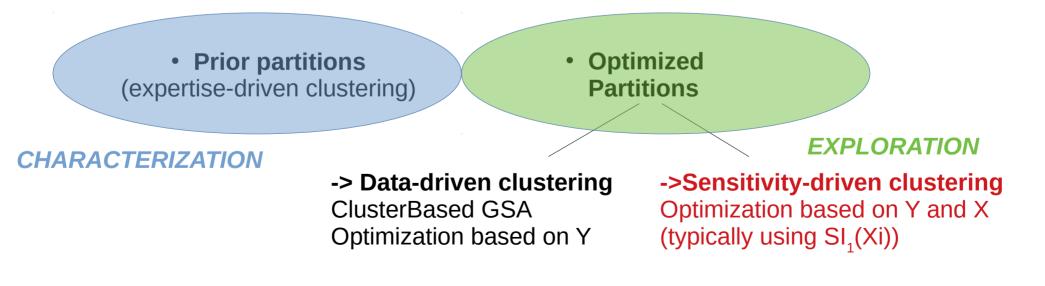
- Using ClustSIs, we can associate sensitivity indices to output space partitions
- There are 3 general ways of using ClustSIs

• **Prior partitions** (expertise-driven clustering)

• Optimized Partitions

-> Data-driven clustering ClusterBased GSA Optimization based on Y ->Sensitivity-driven clustering Optimization based on Y and X (typically using SI₁(Xi))

- Using ClustSIs, we can associate sensitivity indices to output space partitions
- There are 3 general ways of using ClustSIs



Sensitivity-driven clustering

• Objectives :

- revealing behaviors (ie regions of the output space) most (or very much) impacted by variations of a parameter (or a group or an interaction,...) using an optimization procedure

- expressing graphically the sensitivity of the input factors (or a group or an interaction,..) on the output, including in the case of MV outputs

Sensitivity-driven clustering

- 1D « analytical example »
- 2D (numerical with different approaches)
- ND (numerical)

Optimized sensitive partioning in 1D

- we restrict to the study to binary partitions A,B of [0,1]
- many possible situations depending on connexity

- binarization with 2 connected components => parameterization of by a single cutting value yc
- binarization with 3 connected components => parameterized by a two cutting values yc1 and yc2

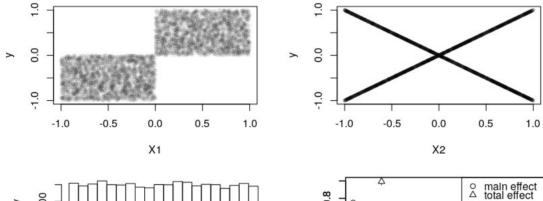
$$Y(x_{1}, x_{2}) = sign(X_{1}) \cdot |X_{2}|$$

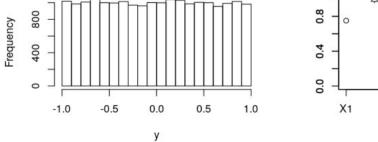
$$x_{1} \sim U[-1, 1]$$

$$x_{2} \sim U[-1, 1]$$

 Δ

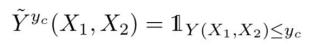
X2

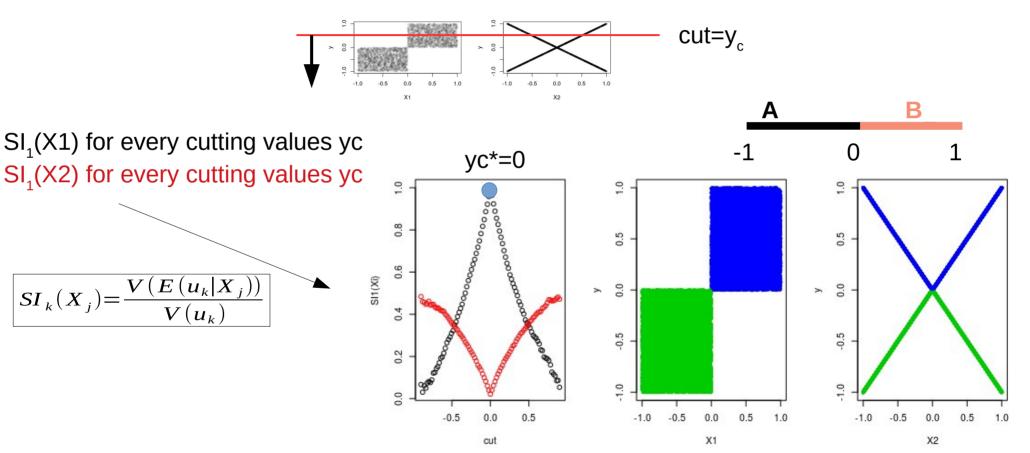




$Y(x_{1}, x_{2}) = sign(X_{1}) \cdot |X_{2}|$ $x_{1} \sim U[-1, 1]$ $x_{2} \sim U[-1, 1]$

Binarization with 2 Connected components:





 $\tilde{Y}^{y_{c1},y_{c2}}(X_1,X_2) = \mathbb{1}_{Y(X_1,X_2)\in[y_{c1},y_{c2}]}$

y 0.0

-1.0 -0.5 0.0 0.5

X2

$$Y(x_{1}, x_{2}) = sign(X_{1}) \cdot |X_{2}|$$

$$x_{1} \sim U[-1, 1]$$

$$x_{2} \sim U[-1, 1]$$

 $SI_1(X2)$ for every cutting values yc1,yc2

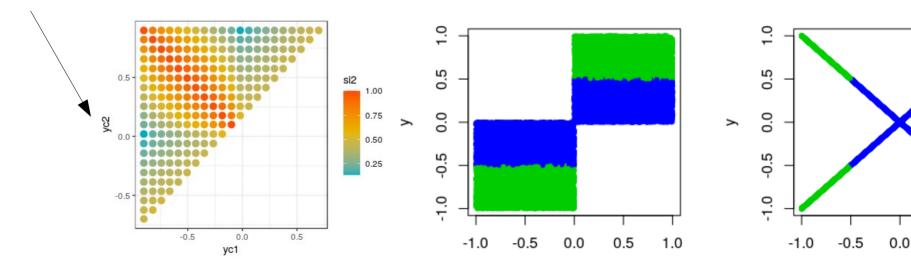
y 0.0

-1.0 -0.5 0.0 0.5 1.0

X1

Binarization with 3

Connected components:



 \mathbf{y}_{c1}

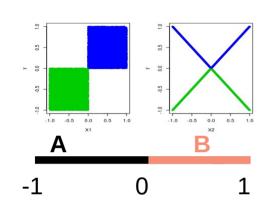
 \mathbf{y}_{c2}

Х1

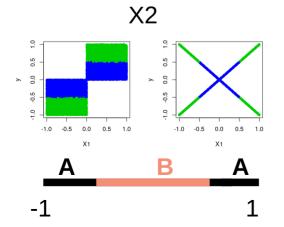
0.5

1.0

 $Y(x_{1}, x_{2}) = sign(X_{1}) \cdot |X_{2}|$ $x_{1} \sim U[-1, 1]$ $x_{2} \sim U[-1, 1]$



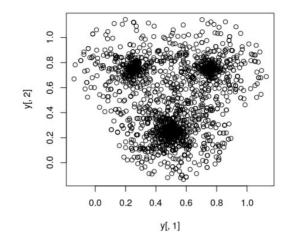
X1



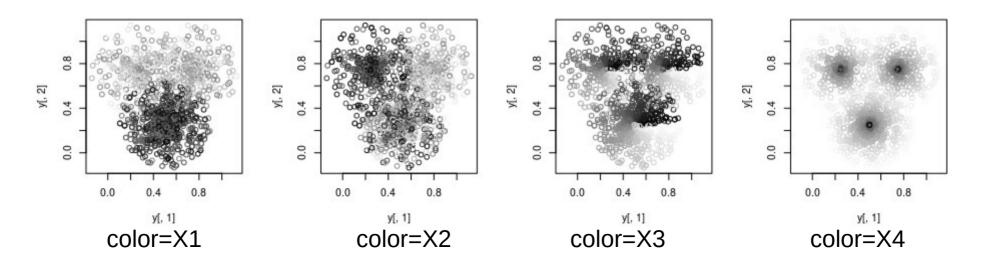
- Possibility to solve analytically
- Optimal partition depends on the parameter X1 or X2
- Optimum found even if the the space of partitions has not been completely explored (as SI=1 is optimal)
- We can have SI_C*>SI (clustSI2*=1, SI2=0)
- Optimal partitions can have more than 2 connected components
- The optimal partition in not unique

2D numerical example

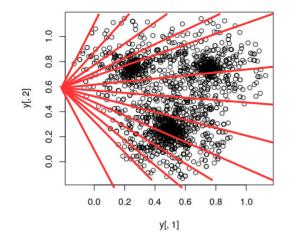
Y=(Y1,Y2) = f(X1,X2,x3,X4) 3 centers X1,X2 : choice of center X3 : angle X4 : distance from center



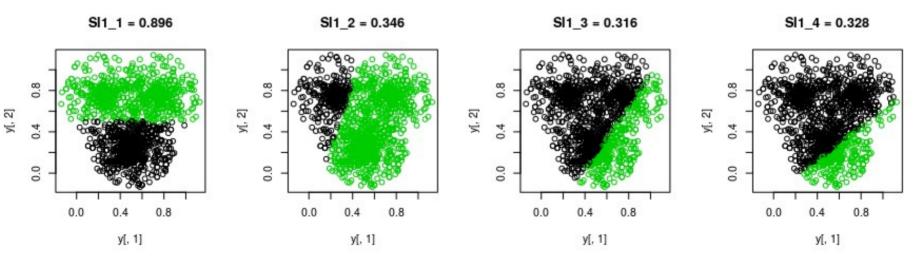
y1 = cx + 0.4* cos(2*pi*x[3])*x[4]^3 y2 = cy + 0.4* sin(2*pi*x[3])*x[4]^3 return(c(y1,y2))



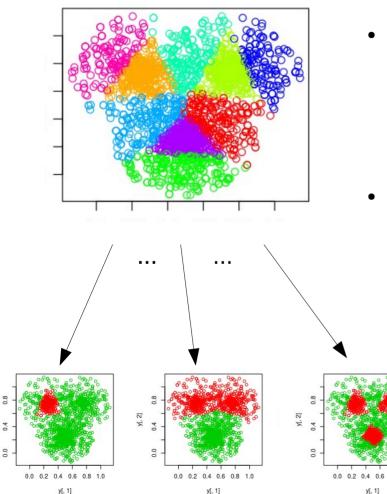
2D partitioning: connected binarization with straights lines



- Boundary discretization : n pts per border
- complexity: 6.n²
- N=7 => 294 splitting



2D (and nD) partitioning: non-connected partitioning SI1 criterion



- Principle of the algorithm for SI/TSI criteria :
 - => Clustering of the outputs into K clusters
 - => Generate all partitions [1..K] into 2 sets
 - => Compute SI/TSI criteria for each binarization

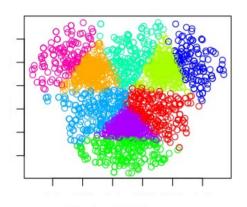
 Nb : 2^(K-1) K=10 : Nb= 512 K=20 : Nb= 524288

> ⇒ solve the issue of getting non connected set
> ⇒ very flexible (various SI-based criteria, adding constraints)

 \Rightarrow limited spatial resolution (K..)

 \Rightarrow can handle MV output (providing the clustering does)

2D (and nD) partitioning: non-connected partitioning SI1 criterion



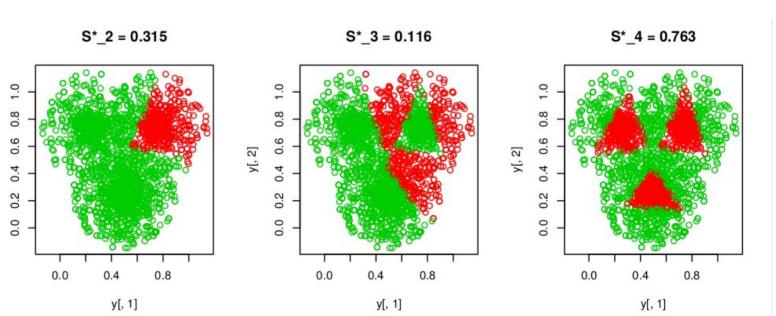
K=9

 Principle of the algorithm for SI/TSI criteria: (sensitivity indices on Membership functions)

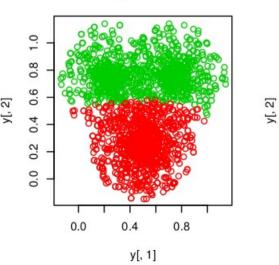
- => Clustering of the outputs into K clusters
- => Generate all partitions [1..K] into **2 sets**

 $SI_{k}(X_{j}) = \frac{V(E(u_{k}|X_{j}))}{V(u_{k})}$

=> Compute SI/TSI criteria for each binarization



S*_1 = 0.866



2D (and nD) partitioning: non-connected partitioning Other criterion : "neutral class"

K=9

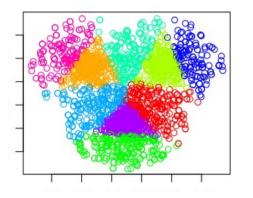
0.6 0.8

0.4

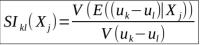
0.2

0.0

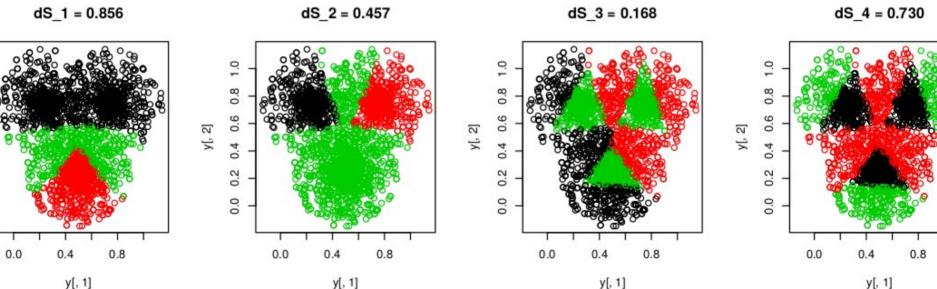
y[, 2]



- Principle of the algorithm using 'neutral class' (SI/TSI criteria on MF differences) $\int_{SL} (x) - x$
- => Clustering of the outputs into K clusters

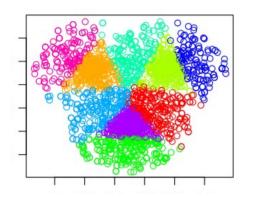


- => Generate all partitions [1..K] into 3 sets
- => Compute SI/TSI criteria for each set using u1-u2



2D (and nD) partitioning: non-connected partitioning Other criterion : "GSI"

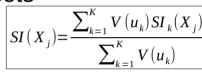
K=9



Kpart=2 GSI 12 = 0.872

Principle of the algorithm

- => Clustering of the outputs into K clusters
- => Generate all partitions [1..K] into 2-3-4-5 sets
- => Compute GSI criteria for each set

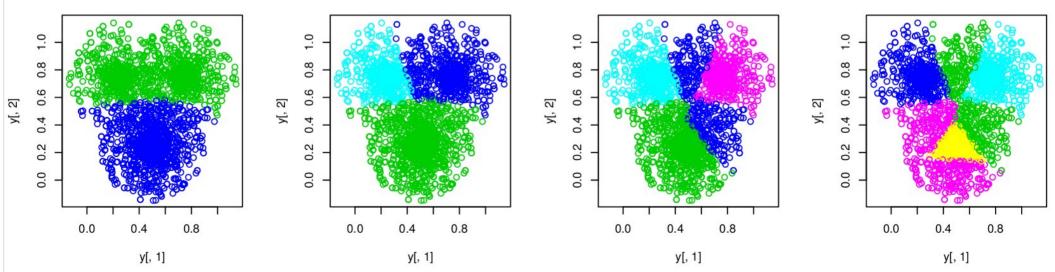


Studying GSI for (X1,X2) and 2-3-4-5 sets

Kpart=3 GSI_12 = 0.850

Kpart=4 GSI_12 = 0.696

Kpart=5 GSI 12 = 0.542



2D (and nD) partitioning: non-connected partitioning Algorithm improvement for SI1 criterion

⇒ Keeping the exhaustive step (seems necessary to handle non connectivity)
 ⇒ Improving the pre-processing step by using properties of the criterion

We consider a set of elementary patches Ck (region of the output space) We consider the conditional distribution of Xi for Y in Ck We compute the associated histograms for a given discretization of Xi into bins

The SI1 based clustering criterion writes

$$S_C = \frac{n_x}{\sum_{j=1}^{n_x} h_j^C (N - \sum_{j=1}^{n_x} h_j^C)} \sum_{i=1}^{n_x} (h_i^C - \frac{1}{n_x} \sum_{j=1}^{n_x} h_j^C)^2$$

2D (and nD) partitioning: non-connected partitioning Algorithm improvement for SI1 criterion

⇒ Keeping the exhaustive step (seems necessary to handle non connectivity)
 ⇒ Improving the pre-processing step by using properties of the criterion

Let's consider two patches Ck, Ck' and their associated histograms Hk,Hk' Let's suppose that Hk,Hk' are highly correlated

Let's denote (C*,-C*) the optimal partition built from the (Ck)

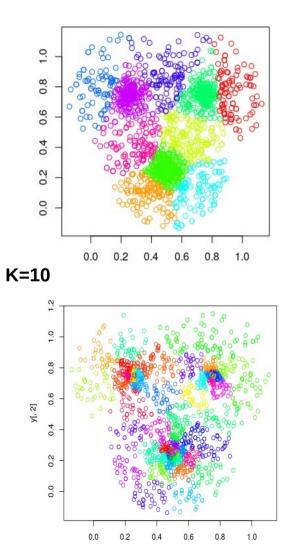
Then Either Ck and Ck' belongs to C* Ck and Ck' belongs to -C*

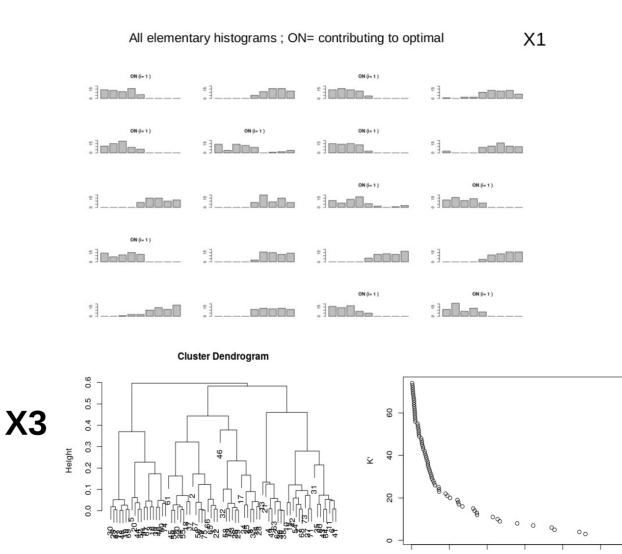
2D (and nD) partitioning: non-connected partitioning Algorithm improvement for SI1 criterion

⇒ Keeping the exhaustive step (seems necessary to handle non connectivity)
 ⇒ Improving the pre-processing step by using properties of the criterion

- High resolution clustering of the output space into K cluster (e.g. 150)
- New : Aggregation of clusters based on histogram correlation \rightarrow K' metapatches
- Generate all partitions [1..K'] into 2 sets
- Compute SI/TSI criteria for each binarization

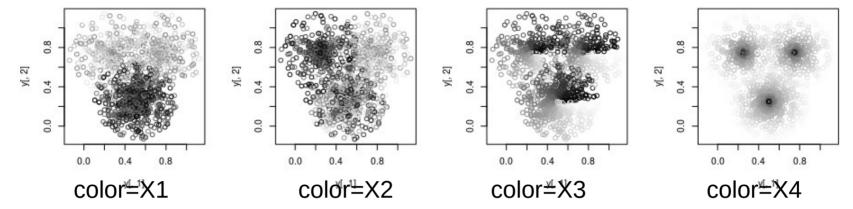
Hierarchical clustering of elementary histograms



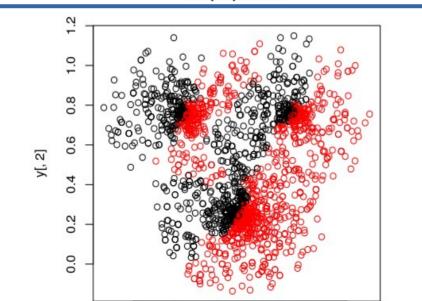


00

Results

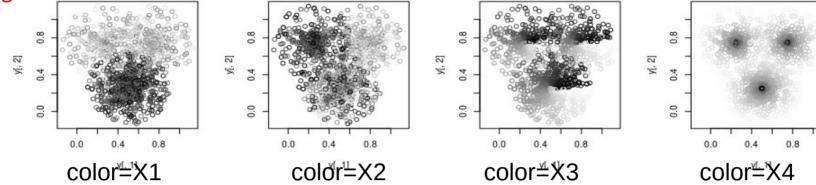


SI*(X3)=0.695

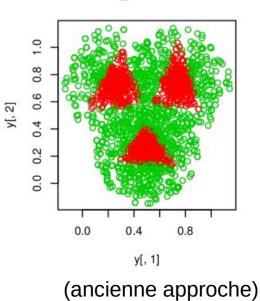




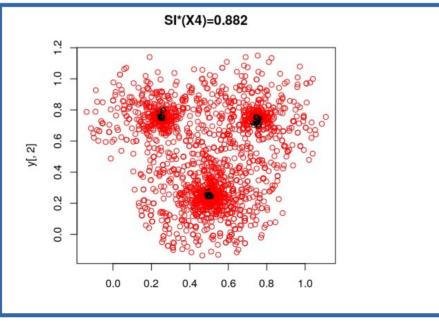
X3 K=150 Cut=0.2 K'=16



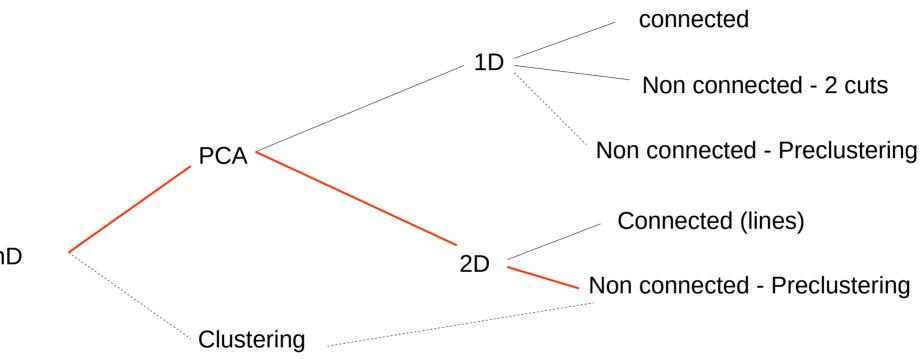
S*_4 = 0.763



X4 Cut=0.1 K'=13



nD numerical example: ToyCurve



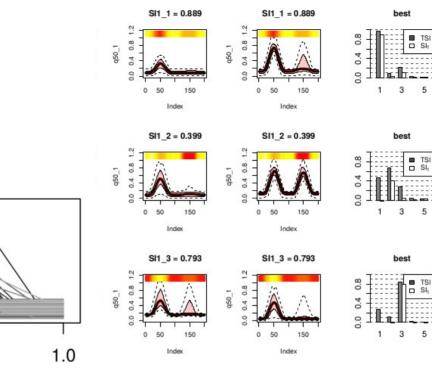
nD

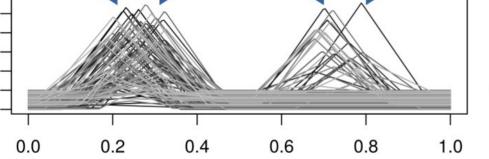
nD numerical ToyCurve

1.2

0.6

0.0



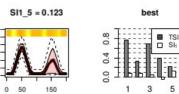


0 ö 0.0 3 5 1

best

5

5



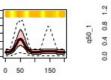
SI1_4 = 0.677

150

Index

Index

0 50



SI1_4 = 0.677

150

Index

SI1_5 = 0.123

1-05p

q50_1

ö

0 50

Index

Perspectives

- CB-GSA : applications on environmental models (crop mixtures or hydrologic models)
 - => Key issues
 - DOE
 - Finding appropriate clustering (a priori or automatic)
- CB-GSA :Complementary analysis : intra-cluster and pure cluster transitions (which amounts to AS with dependent inputs)
- Sensitivity-driven clustering : test on a realistic model with MV outputs
- Sensitivity driven clustering : more efficient algorithms ??